About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

A comparative study of oxygen transmission rates through polymer films based on fluorescence quenching : OTR THROUGH POLYMER FILMS

From

Solar Energy Programme, Risø National Laboratory for Sustainable Energy, Technical University of Denmark1

Risø National Laboratory for Sustainable Energy, Technical University of Denmark2

Information on oxygen permeability through polymer films is essential for some applications, especially in food packaging where the control of oxygen levels can be critical in avoiding food spoilage. A permeability testing device using fluorescence-based optical oxygen sensing was developed as a potential new instrument for measuring the oxygen permeability of packaging films.

The fluorescence-based permeability tester was validated against two existing commercial oxygen permeability measuring devices, the Mocon Ox-Tran 2/20 and PBI-Dansensor OPT-5000. Oxygen transmission rates (OTR) of polylactide (PLA) and nanoclay-reinforced PLA films, as well as polyethylene/poly(ethylene terephthalate) (PE/PET) and polypropylene/poly(ethylene terephthalate) (PP/PET) laminated films were determined at 23°C and 50% relative humidity using each of these instruments.

No significant differences were observed between mean OTR values obtained by the fluorescence method and the corresponding values obtained using the OPT-5000 but significantly lower values were measured when using the Mocon Ox-Tran 2/20. In general, oxygen permeability data for the tested films were within the range of values found in the literature; however, in terms of further development, the fluorescence-based technique gave OTR with relatively high standard deviation compared to the commercial methods and equipment modifications to address this issue are considered desirable.

Copyright © 2010 John Wiley & Sons, Ltd.

Language: English
Year: 2010
Pages: 301-315
ISSN: 08943214 and 10991522
Types: Journal article
DOI: 10.1002/pts.895

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis