About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Coastal Sea Level from CryoSat-2 SARIn Altimetry in Norway

From

Norwegian University of Life Sciences1

National Space Institute, Technical University of Denmark2

Geodesy, National Space Institute, Technical University of Denmark3

Conventional (pulse-limited) altimeters determine the sea surface height with an accuracy of a few centimeters over the open ocean. Sea surface heights and tide-gauge sea level serve as each other’s buddy check. However, in coastal areas, altimetry suffers from numerous effects, which degrade its quality.

The Norwegian coast adds further challenges due to its complex coastline with many islands, mountains, and deep, narrow fjords. The European Space Agency CryoSat-2 satellite carries a synthetic aperture interferometric radar altimeter, which is able to observe sea level closer to the coast than conventional altimeters.

In this study, we explore the potential of CryoSat-2 to provide valid observations in the Norwegian coastal zone. We do this by comparing time series of CryoSat-2 sea level anomalies with time series of in situ sea level at 22 tide gauges, where the CryoSat-2 sea level anomalies are averaged in a 45-km area around each tide gauge.

For all tide gauges, CryoSat-2 shows standard deviations of differences and correlations of 16 cm and 61%, respectively. We further identify the ocean tide and inverted barometer geophysical corrections as the most crucial, and note that a large amount of observations at land-confined tide gauges are not assigned an ocean tide value.

With the availability of local air pressure observations and ocean tide predictions, we substitute the standard inverted barometric and ocean tide corrections with local corrections. This gives an improvement of 24% (to 12.2 cm) and 12% (to 68%) in terms of standard deviations of differences and correlations, respectively.

Finally, we perform the same in situ analysis using data from three conventional altimetry missions, Envisat, SARAL/AltiKa, and Jason-2. For all tide gauges, the conventional altimetry missions show an average agreement of 11 cm and 60% in terms of standard deviations of differences and correlations, respectively.

There is a tendency that results improve with decreasing distance to the tide gauge and a smaller footprint, underlining the potential of SAR altimetry in coastal zones.

Language: English
Year: 2018
Pages: 1344-1357
ISSN: 18791948 and 02731177
Types: Journal article
DOI: 10.1016/j.asr.2017.07.043
ORCIDs: Andersen, Ole Baltazar

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis