About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Conference paper · Journal article

Modeling phase equilibria for acid gas mixtures using the CPA equation of state. Part II: Binary mixtures with CO2

From

CERE – Center for Energy Ressources Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark1

Department of Chemical and Biochemical Engineering, Technical University of Denmark2

Department of Chemistry, Technical University of Denmark3

Center for Energy Resources Engineering, Centers, Technical University of Denmark4

In Part I of this series of articles, the study of H2S mixtures has been presented with CPA. In this study the phase behavior of CO2 containing mixtures is modeled. Binary mixtures with water, alcohols, glycols and hydrocarbons are investigated. Both phase equilibria (vapor–liquid and liquid–liquid) and densities are considered for the mixtures involved.

Different approaches for modeling pure CO2 and mixtures are compared. CO2 is modeled as non self-associating fluid, or as self-associating component having two, three and four association sites. Moreover, when mixtures of CO2 with polar compounds (water, alcohols and glycols) are considered, the importance of cross-association is investigated.

The cross-association is accounted for either via combining rules or using a cross-solvation energy obtained from experimental spectroscopic or calorimetric data or from ab initio calculations. In both cases two adjustable parameters are used when solvation is explicitly accounted for. The performance of CPA using the various modeling approaches for CO2 and its interactions is presented and discussed, comparatively to various recent published investigations.

It is shown that overall very good correlation is obtained for binary mixtures of CO2 and water or alcohols when the solvation between CO2 and the polar compound is explicitly accounted for, whereas the model is less satisfactory when CO2 is treated as self-associating compound.

Language: English
Year: 2011
Pages: 38-56
Proceedings: 20 Years of the SAFT Equation of State
ISSN: 18790224 and 03783812
Types: Conference paper and Journal article
DOI: 10.1016/j.fluid.2011.02.006
ORCIDs: Kontogeorgis, Georgios and Stenby, Erling Halfdan

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis