About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Random phase approximation applied to solids, molecules, and graphene-metal interfaces: From van der Waals to covalent bonding

From

Department of Physics, Technical University of Denmark1

Computational Atomic-scale Materials Design, Department of Physics, Technical University of Denmark2

Center for Nanostructured Graphene, Centers, Technical University of Denmark3

The random phase approximation (RPA) is attracting renewed interest as a universal and accurate method for first-principles total energy calculations. The RPA naturally accounts for long-range dispersive forces without compromising accuracy for short-range interactions making the RPA superior to semilocal and hybrid functionals in systems dominated by weak van der Waals or mixed covalent-dispersive interactions.

In this work, we present plane-wave-based RPA calculations for a broad collection of systems with bond types ranging from strong covalent to van der Waals. Our main result is the RPA potential energy surfaces of graphene on the Cu(111), Ni(111), Co(0001), Pd(111), Pt(111), Ag(111), Au(111), and Al(111) metal surfaces, which represent archetypical examples of metal-organic interfaces.

Comparison with semilocal density approximations and a nonlocal van der Waals functional show that only the RPA captures both the weak covalent and dispersive forces, which are equally important for these systems. We benchmark our implementation in the GPAW electronic structure code by calculating cohesive energies of graphite and a range of covalently bonded solids and molecules as well as the dissociation curves of H2 and H2+.

These results show that the RPA with orbitals from the local density approximation suffers from delocalization errors and systematically underestimates covalent bond energies yielding similar or lower accuracy than the Perdew-Burke-Ernzerhof (PBE) functional for molecules and solids, respectively.

Language: English
Year: 2013
ISSN: 1550235x , 10980121 and 01631829
Types: Journal article
ORCIDs: Olsen, Thomas and Thygesen, Kristian S.

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis