About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Numerical investigation into the effect of different parameters on the geometrical precision in the laser-based powder bed fusion process Chain

From

Department of Mechanical Engineering, Technical University of Denmark1

Manufacturing Engineering, Department of Mechanical Engineering, Technical University of Denmark2

Due to the layer-by-layer nature of the process, parts produced by laser-based powder bed fusion (LPBF) have high residual stresses, causing excessive deformations. To avoid this, parts are often post-processed by subjecting them to specially designed heat treatment cycles before or after their removal from the base plate.

In order to investigate the effects of the choice of post-processing steps, in this work the entire LPBF process chain is modelled in a commercial software package. The developed model illustrates the possibilities of implementing and tailoring the process chain model for metal additive manufacturing using a general purpose finite element (FE) solver.

The provided simplified computational example presents an idealised model to analyse the validity of implementing the LPBF process chain in FE software. The model is used to evaluate the effect of the order of the process chain, the heat treatment temperature and the duration of the heat treatment. The results show that the model is capable of qualitatively capturing the effect of the stress relaxation that occurs during a heat treatment at elevated temperature.

Due to its implementation, the model is relatively insensitive to duration and heat treatment temperature, at least as long as it is above the relaxation temperature. Furthermore, the simulations suggest that, when post-processing, it is necessary to perform the stress relaxation before the part is removed from the base plate, in order to avoid a significant increase of the deformation.

The paper demonstrates the capability of the simulation tool to evaluate the effects of variations in the process chain steps and highlights its potential usage in directing decision-making for LPBF process chain design.

Language: English
Publisher: MDPI AG
Year: 2020
Pages: 3414
ISSN: 20763417
Types: Journal article
DOI: 10.3390/app10103414
ORCIDs: Baere, David De , Mohanty, Sankhya , Tosello, Guido , Hattel, Jesper Henri and 0000-0002-0091-1483

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis