About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Negative regulation of plastidial isoprenoid pathway by herbivore-induced β-cyclocitral in Arabidopsis thaliana

From

Max Planck Institute for Chemical Ecology1

Ramon Llull University2

Systems Environmental Microbiology, Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark3

Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark4

University of Toronto5

Insect damage to plants is known to up-regulate defense and down-regulate growth processes. While there are frequent reports about up-regulation of defense signaling and production of defense metabolites in response to herbivory, much less is understood about the mechanisms by which growth and carbon assimilation are down-regulated.

Here we demonstrate that insect herbivory down-regulates the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway in Arabidopsis (Arabidopsis thaliana), a pathway making primarily metabolites for use in photosynthesis. Simulated feeding by the generalist herbivore Spodoptera littoralis suppressed flux through the MEP pathway and decreased steady-state levels of the intermediate 1-deoxy-D-xylulose 5-phosphate (DXP).

Simulated herbivory also increased reactive oxygen species content which caused the conversion of β-carotene to β-cyclocitral (βCC). This volatile oxidation product affected the MEP pathway by directly inhibiting DXP synthase (DXS), the rate-controlling enzyme of the MEP pathway in Arabidopsis and inducing plant resistance against S. littoralis. βCC inhibited both DXS transcript accumulation and DXS activity.

Molecular models suggested that βCC binds to DXS at the binding site for the thymine pyrophosphate cofactor and blocks catalysis, which was confirmed by direct assays of βCC with the purified DXS protein in vitro. Another intermediate of the MEP pathway, 2-C-methyl-D-erythritol-2, 4-cyclodiphosphate, which is known to stimulate salicylate defense signaling, showed greater accumulation and enhanced export out of the plastid in response to simulated herbivory.

Together, our work implicates βCC as a signal of herbivore damage in Arabidopsis that increases defense and decreases flux through the MEP pathway, a pathway involved in growth and carbon assimilation.

Language: English
Publisher: National Academy of Sciences
Year: 2021
Pages: e2008747118-e2008747118
ISBN: 0443157723 , 0443157731 , 9780443157721 and 9780443157738
ISSN: 10916490 and 00278424
Types: Journal article
DOI: 10.1073/pnas.2008747118
ORCIDs: 0000-0001-8836-3305 , 0000-0002-2983-0492 and Volke, Daniel C.

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis