About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Distribution and composition of microbial populations in a landfill leachate contaminated aquifer (Grindsted, Denmark)

From

Department of Environmental Science and Engineering, Technical University of Denmark1

> Abstract To investigate whether landfill leachates affected the microbial biomass and/or community composition of the extant microbiota, 37 samples were collected along a 305-m transect of a shallow landfill-leachate polluted aquifer. The samples were analyzed for total numbers of bacteria by use of the acridine orange direct count method (AODC).

Numbers of dominant, specific groups of bacteria and total numbers of protozoa were measured by use of the most probable number method (MPN). Viable biomass estimates were obtained from measures of ATP and ester-linked phospholipid fatty acid (PLFA) concentrations. The estimated numbers of total bacteria by direct counts were relatively constant throughout the aquifer, ranging from a low of 4.8 x 10(6) cells/g dry weight (dw) to a high of 5.3 x 10(7) cells/g dw.

Viable biomass estimates based on PLFA concentrations were one to three orders of magnitude lower with the greatest concentrations (up to 4 x 10(5) cells/g dw) occurring at the border of the landfill and in samples collected from thin lenses of clay and silt with sand streaks. Cell number estimates based on ATP concentrations were also found to be lower than the direct count measurements (<2.2 x 10(6) cells/g dw), and with the greatest concentrations close to the landfill.

Methanogens (Archaea) and reducers of sulfate, iron, manganese, and nitrate were all observed in the aquifer. Methanogens were found to be restricted to the most polluted and reduced part of the aquifer at a maximum cell number of 5.4 x 10(4) cells/g dw. Populations of sulfate reducers decreased with an increase in horizontal distance from the landfill ranging from a high of 9.0 x 10(3) cells/g dw to a low of 6 cells/g dw.

Iron, manganese, and nitrate reducers were detected throughout the leachate plume all at maximum cell numbers of 10(6) cells/g dw. Changes in PLFA profiles indicated that a shift in microbial community composition occurred with increasing horizontal distance from the landfill. The types and patterns of lipid biomarkers suggested that increased proportions of sulfate- and iron-reducing bacteria as well as certain microeukaryotes existed at the border of the landfill.

The presence of these lipid biomarkers correlated with the MPN results. There was, however, no significant correlation between the abundances of the specific PLFA biomarkers and quantitative measurements of redox processes. The application of AODC, MPN, PLFA, and ATP analyses in the characterization of the extant microbiota within the Grindsted aquifer revealed that as distance increased from the leachate source, viable biomass decreased and community composition shifted.

These results led to the conclusion that the landfill leachate induced an increase in microbial cell numbers by altering the subsurface aquifer so that it was conducive to the growth of methanogens and of iron-and sulfate-reducing bacteria and fungi.

Language: English
Publisher: Springer-Verlag
Year: 1999
Pages: 197-207
Journal subtitle: An International Journal
ISSN: 1432184x and 00953628
Types: Journal article
DOI: 10.1007/s002489900143
ORCIDs: 0000-0002-2144-7659 , Albrechtsen, H.-J. and Christensen, T.H.

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis