About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Treatment of clean in place (CIP) wastewater using microalgae: Nutrient upcycling and value-added byproducts production

From

Carlsberg Research Center1

National Food Institute, Technical University of Denmark2

Research Group for Bioactives – Analysis and Application, National Food Institute, Technical University of Denmark3

CIP wastewater is one of the major wastewater streams from the food industry, and its treatment is generally expensive, requiring a large effort to reduce its typically high nitrogen (N), and phosphorus (P) contents. Microalgae-based wastewater treatment is increasingly explored as a more sustainable alternative to the conventional methods, due to the added benefit of nutrient upcycling and value-added biomass production.

For the first time, four microalgae species were used to treat CIP wastewater high in N (565.5 mg NO3−-N/l) and P (98.0 mg PO43−-P/l). An intermittent biomass harvesting strategy was adopted in this study to enhance the purification of CIP water and redirection of nutrients into algal biomass. Over 93 days operation, N removal efficiency was 52.1 ± 2.9%, 54.8 ± 2.5%, 50.0 ± 2.3% and 48.3 ± 0.5%, and P removal efficiency was 65.5 ± 10.0%, 79.4 ± 6.1%, 61.8 ± 2.5% and 69.1 ± 7.7% for Chlamydomonas reinhardtii, Chlorella vulgaris, Scenedesmus obliquus and wastewater borne microalgae, respectively.

After the first (acclimatization) and second growth cycles, cell growth and nutrient removal slowed down but increased again after adding trace nutrients, indicating the lack of trace elements after the first two growth cycles. In the fourth and fifth batch runs, both algal growth rate and nutrient removal rate decreased despite adding trace nutrients and/or increasing light intensity, this being a consequence of the excreted soluble algal products accumulating during long-term operation.

S. obliquus had the highest protein concentration of 44.5 ± 9.8% DW, while C. vulgaris accumulated the highest total lipid content (15.6 ± 0.9%, DW). In this proof-of-concept study, the cultivation of microalgae in CIP wastewater with an intermittent harvest of the accumulated algal biomass is demonstrated and it outlines the potential of microalgae to sustainably treat effluents with extremely high nutrients concentration while producing the food-grade algae biomass.

Language: English
Year: 2021
Pages: 147337
ISSN: 18791026 and 00489697
Types: Journal article
DOI: 10.1016/j.scitotenv.2021.147337
ORCIDs: Jacobsen, Charlotte

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis