About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Conference paper

Formulation and Design of a CO2 Utilization Network Detailed Through a Conceptual Example

From

Department of Chemical and Biochemical Engineering, Technical University of Denmark1

CAPEC-PROCESS, Department of Chemical and Biochemical Engineering, Technical University of Denmark2

Technical University of Denmark3

Climate change is a global issue that has come to the forefront of environmental concern. With the increasing emissions of greenhouse gases, efforts have increased to reduce carbon dioxide (CO2) emissions. Regulatory guidelines are becoming more stringent and efforts for long-term reduction are being investigated and implemented [1].

Carbon Capture and Storage (CCS) is the dominant method that is discussed. However, CO2 utilization is receiving increased attention for its ability to help in long-term CO2 reduction and the formation of various chemical products. One of the primary elements of utilization is the conversion of CO2 to valuable products via chemical reactions with other raw materials.

In order for this to be implemented at a large and industrial level, further work is necessary. As part of this, the work focuses on the formulation and design of a CO2 utilization network via a superstructure-based methodology. The sustainability and feasibility of linking carbon capture and CO2 conversion is studied in detail in a case study.

CCS is still under development and CO2 utilization is showing great promise as an additional method of combatting CO2 emissions [2]. The method developed involves three stages: a process synthesis stage, a design stage and an innovation stage. Following a superstructure based approach, a network of conversion processes is created.

This network links CO2 and products through various processing blocks. The network also links carbon capture to ensure the sustainability. Each processing block within the developed network needs to be mathematically described for optimization. The second stage is the detailed design of a path within the network, followed by analysis and improvement by creating a more sustainable design in the innovation stage.

However, as not all information is available to describe the network mathematically, the most promising paths based on known technologies are designed and analyzed first. This makes the stages iterative rather than purely sequential. As part of this, the network is analyzed in the conceptual example of methanol synthesis via CO2 hydrogenation.

This case study illustrates the utility of the utilization network and elements of the methodology being developed. In addition, the conversion process is linked with carbon capture to evaluate the overall sustainability. Finally, the production of the other raw materials is also analyzed for economic feasibility and environmental sustainability.

Using computer-aided methods, the feasibility and sustainability of CO2 conversion is shown through the design and optimization of a methanol synthesis process.

Language: English
Year: 2015
Proceedings: 10th European Congress of Chemical Engineering
Types: Conference paper
ORCIDs: Frauzem, Rebecca

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis