About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

High-resolution infrared spectrum of CHD279Br: ro-vibrational analysis of the ν5 and ν9 fundamentals

From

Universitá Ca' Foscari Venezia1

Department of Chemistry, Technical University of Denmark2

The high-resolution infrared spectrum of CHD279Br has been investigated by Fourier transform spectroscopy in the range 700–900 cm−1 at an unapodized resolution of 0.0035 cm−1. This spectral region is characterised by the absorptions of the ν5 (814.5185 cm−1) and ν9 (716.9649 cm−1) fundamental bands, corresponding to H–C–Br deformation and CD2 rocking modes, respectively.

The ν5 vibration of symmetry species A′ gives rise to an a-/c-hybrid band with a predominant a-type component, while the ν9 mode of A′′ symmetry produces a b-type envelope. The spectral analysis resulted in the identification of 5290 (J′ ≤ 63 and Ka′ ≤ 13) and 1657 (J′ ≤ 53 and Ka′ ≤ 12) transitions for ν5 and ν9 bands, respectively.

The assigned data were fitted using the Watson’s S-reduced Hamiltonian in the Ir representation and the v5 = 1 and v9 = 1 state parameters up to the quartic centrifugal distortion terms have been obtained. From spectral simulations the dipole moment ratio |Δμa/Δμc| of the ν5 band has been determined to be 1.4 ± 0.1 while the intensity ratio between ν5 and ν9 fundamentals has been estimated to have a value of 4.3 ± 0.5.

Language: English
Publisher: Taylor & Francis
Year: 2020
Pages: e1654627
Journal subtitle: An International Journal at the Interface Between Chemistry and Physics
ISSN: 13623028 and 00268976
Types: Journal article
DOI: 10.1080/00268976.2019.1654627
ORCIDs: Larsen, René Wugt

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis