About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Feruloylated Arabinoxylan and Oligosaccharides: Chemistry, Nutritional Functions, and Options for Enzymatic Modification

From

Department of Biotechnology and Biomedicine, Technical University of Denmark1

Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark2

Enzyme Technology, Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark3

Cereal brans and grain endosperm cell walls are key dietary sources of different types of arabinoxylan. Arabinoxylan is the main group of hemicellulosic polysaccharides that are present in the cell walls of monocot grass crops and hence in cereal grains. The arabinoxylan polysaccharides consist of a backbone of β-(1→4)-linked xylopyranosyl residues, which carry arabinofuranosyl moieties, hence the term arabinoxylan.

Moreover, the xylopyranosyl residues can be acetylated or substituted by methyl-glucuronic acid. The arabinofuranosyls may be esterified with a feruloyl group. Feruloylated arabinoxylo-oligosaccharides exert beneficial bioactivities via prebiotic, immunomodulatory, and/or antioxidant effects. New knowledge on microbial enzymes that catalyze specific structural modifications of arabinoxylans can help us understand how these complex fibers are converted in the gut and provide a foundation for the production of feruloylated arabinoxylo-oligosaccharides from brans or other cereal grain processing sidestreams as functional food ingredients.

There is a gap between the structural knowledge, bioactivity data, and enzymology insight. Our goal with this review is to present an overview of the structures and bioactivities of feruloylated arabinoxylo-oligosaccharides and review the enzyme reactions that catalyze specific changes in differentially substituted arabinoxylans.

Language: English
Publisher: Annual Reviews
Year: 2021
Pages: 331-354
ISSN: 19411421 and 19411413
Types: Journal article
DOI: 10.1146/annurev-food-032818-121443
ORCIDs: Lin, Shang , Agger, Jane Wittrup , Wilkens, Casper and Meyer, Anne S.

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis