About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Phase behavior of supported lipid bilayers: A systematic study by coarse-grained molecular dynamics simulations

From

University of Memphis1

Department of Systems Biology, Technical University of Denmark2

Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark3

Solid-supported lipid bilayers are utilized by experimental scientists as models for biological membranes because of their stability. However, compared to free standing bilayers, their close proximity to the substrate may affect their phase behavior. As this is still poorly understood, and few computational studies have been performed on such systems thus far, here we present the results from a systematic study based on molecular dynamics simulations of an implicit-solvent model for solid-supported lipid bilayers with varying lipid-substrate interactions.

The attractive interaction between the substrate and the lipid head groups that are closest to the substrate leads to an increased translocation of the lipids from the distal to the proximal bilayer-leaflet. This thereby leads to a transbilayer imbalance of the lipid density, with the lipid density of the proximal leaflet higher than that of the distal leaflet.

Consequently, the order parameter of the proximal leaflet is found to be higher than that of the distal leaflet, the higher the strength of lipid interaction is, the stronger the effect. The proximal leaflet exhibits gel and fluid phases with an abrupt melting transition between the two phases. In contrast, below the melting temperature of the proximal leaflet, the distal leaflet is inhomogeneous with coexisting gel and fluid domains.

The size of the fluid domains increases with increasing the strength of the lipid interaction. At low temperatures, the inhomogeneity of the distal leaflet is due to its reduced lipid density.

Language: English
Publisher: AIP Publishing LLC
Year: 2017
Pages: 154902
ISSN: 10897690 and 00219606
Types: Journal article
DOI: 10.1063/1.4981008

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis