About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

The Potential of Bioelectrochemical Sensor for Monitoring of Acetate During Anaerobic Digestion: Focusing on Novel Reactor Design

From

China Agricultural University1

Department of Environmental Engineering, Technical University of Denmark2

Residual Resource Engineering, Department of Environmental Engineering, Technical University of Denmark3

Acetate as the dominant fraction of volatile fatty acids (VFAs) is an important intermediate in metabolic pathways of methanogenesis, which could reflect the stability status of anaerobic digestion (AD) process. Bioelectrochemical sensors for environmental or bioprocess monitoring have become increasingly attractive in recent years.

Although it was more favorable, several challenges still need to be addressed for acetate detection, including large electrode spacing, low stability, biofouling at the cathode and low detection range. In this study, an innovative biosensor on the basis of a three-chamber microbial electrochemical system was proposed to monitor the acetate during the AD process.

In such a system, acetate was first transferred from sample chamber through the anion exchange membrane (AEM) to anode due to the driven force of concentration difference and then oxidized by anodic biofilm as a substrate for the current generation. With such design, the influence of waste properties fluctuation in the cathodic reaction could be avoided.

The response of current density to different acetate concentrations was investigated. The selectivity, the influence of the sample temperature and the external resistance were also evaluated. The correlation (R2 > 0.99) between the current densities and acetate concentrations (up to 160 mM) was established at specific reaction time (from 2 to 5 h).

Current densities after 5 h reaction were improving about 20% when the sample temperature was high (e.g., 37 and 55°C). The detection range increased along with the decrease of external resistance. The acetate concentrations of AD effluents as determined by the biosensor where within 24.2% of the ones determined by gas chromatography.

Nevertheless, the application of the biosensor for monitoring acetate in environmental samples could still be promising.

Language: English
Publisher: Frontiers Media S.A.
Year: 2019
Pages: 3357
ISSN: 1664302x
Types: Journal article
DOI: 10.3389/fmicb.2018.03357
ORCIDs: 0000-0003-1203-0680 , Angelidaki, Irini and Zhang, Yifeng

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis