About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Conductance of Conjugated Molecular Wires: Length Dependence, Anchoring Groups, and Band Alignment

From

Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, and Center for Atomic-scale Materials Design, Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

The conductance of π-conjugated molecular wires bonded to gold electrodes at zero bias is studied using density functional theory combined with nonequilibrium Green’s function method. For all systems considered, we find that the conductance length dependence follows the simple exponential law characteristic of tunneling through a barrier, G = Gc exp(−βL).

For thiophene, pyrrole, and phenyl wires with thiol end-groups, we calculate decay constants (β) of 0.211, 0.257, and 0.264 Å−1, respectively, and contact conductances (Gc) of 1.25, 2.90, and 1.22G0, where G0 = 2e2/h is the conductance quantum. In comparison, the corresponding values for amine-terminated thiophene are calculated to be β = 0.160 Å−1 and Gc = 0.038G0.

These results show that (1) the contact resistance is mainly determined by the anchoring group and (2) the decay constant, which determines the conductance in the long wire limit, is not solely determined by the intrinsic band gap of the molecular wire but also depends on the anchoring group. This is because the alignment of the metal Fermi level with respect to the molecular levels is controlled by charge transfer and interface dipoles which in turn are determined by the local chemistry at the interface.

Analysis of the charge transfer at the interface shows that the thiol-bonded molecules receive electrons from the Au electrodes while the amine-bonded molecules donate electrons to the Au electrodes.

Language: English
Publisher: American Chemical Society
Year: 2009
Pages: 20967-20973
ISSN: 19327455 and 19327447
Types: Journal article
DOI: 10.1021/jp9084603

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis