About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Role of zooplankton dynamics for Southern Ocean phytoplankton biomass and global biogeochemical cycles

From

University of East Anglia1

Queen Mary University of London2

Institute of Marine Research3

Plymouth Marine Laboratory4

Memorial University of Newfoundland5

Swiss Federal Institute of Technology Zurich6

Université Lille Nord de France7

Sorbonne Université8

Laboratoire des Sciences de Climat et de l’Environnement9

Bournemouth University10

University of Essex11

Macquarie University12

National Institute of Aquatic Resources, Technical University of Denmark13

Centre for Ocean Life, National Institute of Aquatic Resources, Technical University of Denmark14

...and 4 more

Global ocean biogeochemistry models currently employed in climate change projections use highly simplified representations of pelagic food webs. These food webs do not necessarily include critical pathways by which ecosystems interact with ocean biogeochemistry and climate. Here we present a global biogeochemical model which incorporates ecosystem dynamics based on the representation of ten plankton functional types (PFTs): six types of phytoplankton, three types of zooplankton, and heterotrophic procaryotes.

We improved the representation of zooplankton dynamics in our model through (a) the explicit inclusion of large, slow-growing macrozooplankton (e.g. krill), and (b) the introduction of trophic cascades among the three zooplankton types. We use the model to quantitatively assess the relative roles of iron vs. grazing in determining phytoplankton biomass in the Southern Ocean high-nutrient low-chlorophyll (HNLC) region during summer.

When model simulations do not include macrozooplankton grazing explicitly, they systematically overestimate Southern Ocean chlorophyll biomass during the summer, even when there is no iron deposition from dust. When model simulations include a slow-growing macrozooplankton and trophic cascades among three zooplankton types, the high-chlorophyll summer bias in the Southern Ocean HNLC region largely disappears.

Our model results suggest that the observed low phytoplankton biomass in the Southern Ocean during summer is primarily explained by the dynamics of the Southern Ocean zooplankton community, despite iron limitation of phytoplankton community growth rates. This result has implications for the representation of global biogeochemical cycles in models as zooplankton faecal pellets sink rapidly and partly control the carbon export to the intermediate and deep ocean.

Language: English
Publisher: Copernicus Publications
Year: 2016
Pages: 4111-4133
ISSN: 17264189 and 17264170
Types: Journal article
DOI: 10.5194/bg-13-4111-2016
ORCIDs: 0000-0003-2319-0452 , 0000-0001-6274-5583 , 0000-0003-4364-1951 , 0000-0002-2854-7003 and 0000-0002-1296-6764

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis