About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Bladder wall biomechanics: A comprehensive study on fresh porcine urinary bladder

From

National Food Institute, Technical University of Denmark1

Research group for Nano-Bio Science, National Food Institute, Technical University of Denmark2

University of Copenhagen3

Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark4

Regenerative medicine for reconstructive urogenital surgery has been widely studied during the last two decades. One of the key factors affecting the quality of bladder regeneration is the mechanical properties of the bladder scaffold. Insight into the biomechanics of this organ is expected to assist researchers with functional regeneration of the bladder wall.

Due to extensive similarities between human bladder and porcine bladder, and with regard to lack of comprehensive biomechanical data from the porcine bladder wall (BW), our main goal here was to provide a thorough evaluation on viscoelastic properties of fresh porcine urinary BW. Three testing modes including Uniaxial tensile, Ball-burst (BB) and Dynamic Mechanical Analyses (DMA) were applied in parallel.

Uniaxial tests were applied to study how different circumferential and longitudinal cut-outs of lateral region of BW behave under load. DMA was used to measure the viscoelastic properties of the bladder tissue (storage and loss modulus) tested in a frequency range of 0.1 to 3 Hz. BB was selected as a different technique replicating normal physiological conditions where the BW is studied in whole.

According to uniaxial tests, the anisotropic behavior of bladder was evident at strain loads higher than 200%. According to DMA, storage modulus was found to be consistently higher than loss modulus in both directions, revealing the elasticity of the BW. The stress-strain curves of both uniaxial and BB tests showed similar trends.

However, the ultimate stress measured from BB was found to be around 5 times of the relevant stress from uniaxial loading. The ultimate strain in BB (389.9 ± 59.8) was interestingly an approximate average of longitudinal (358 ± 21) and circumferential (435 ± 69) rupture strains. Considering that each testing mode applied here reveals distinct information, outcomes from the combination of the three can be considered as a helpful data-base to refer to for researchers aiming to regenerate the bladder.

Language: English
Year: 2018
Pages: 92-103
ISSN: 17516161 and 18780180
Types: Journal article
DOI: 10.1016/j.jmbbm.2017.11.034
ORCIDs: Ajalloueian, Fatemeh , Stubbe, Peter Reimer , Chronakis, Ioannis S. and 0000-0003-0620-6504

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis