About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

A Transverse Oscillation Approach for Estimation of Three-Dimensional Velocity Vectors, Part I: Concept and Simulation Study

From

Department of Electrical Engineering, Technical University of Denmark1

Biomedical Engineering, Department of Electrical Engineering, Technical University of Denmark2

Center for Fast Ultrasound Imaging, Centers, Technical University of Denmark3

A method for 3-D velocity vector estimation us - ing transverse oscillations is presented. The method employs a 2-D transducer and decouples the velocity estimation into three orthogonal components, which are estimated simultane - ously and from the same data. The validity of the method is investigated by conducting simulations emulating a 32 × 32 matrix transducer.

The results are evaluated using two per - formance metrics related to precision and accuracy. The study includes several parameters including 49 flow directions, the SNR, steering angle, and apodization types. The 49 flow direc - tions cover the positive octant of the unit sphere. In terms of accuracy, the median bias is −2%.

The precision of v x and v y depends on the flow angle β and ranges from 5% to 31% rela - tive to the peak velocity magnitude of 1 m/s. For comparison, the range is 0.4 to 2% for v z . The parameter study also reveals, that the velocity estimation breaks down with an SNR between −6 and −3 dB. In terms of computational load, the estimation of the three velocity components requires 0.75 billion floating point operations per second (0.75 Gflops) for a realistic setup.

This is well within the capability of modern scanners.

Language: English
Publisher: IEEE
Year: 2014
Pages: 1599-1607
ISSN: 15258955 and 08853010
Types: Journal article
DOI: 10.1109/TUFFc.2013.006237
ORCIDs: Jensen, Jørgen Arendt

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis