About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Conference paper

Spectral integration of interaural time differences in auditory localization

From

Department of Electrical Engineering, Technical University of Denmark1

Hearing Systems, Department of Electrical Engineering, Technical University of Denmark2

National Acoustic Laboratories3

This study investigates how the auditory system integrates spatial information across frequency. In experiment 1, discrimination thresholds for interaural time differences (ITDs) were measured as a function of both reference ITD and center frequency (CF) of noises with bandwidth of one ERB. In addition, discrimination thresholds were also measured as a function of CF for different values of interaural coherence (IC) typical of sounds in realistic acoustic environments.

For both high ICs and small reference ITDs, discrimination thresholds were lowest for CFs between 700 and 1000 Hz. For smaller ICs and larger reference ITDs, this dominance region shifted towards lower CFs. A conceptual localization model was developed that used the variance of the ITD thresholds to optimally weight the contribution of the individual frequency bands before spectral integration.

In experiment 2, the model was tested by asking listeners to align a broadband noise signal with an ITD that was fixed across frequency onto a broadband noise target with different ITDs in individual 1 ERB-wide subbands. The results were consistent with both the model predictions and the shift of dominance range observed in experiment one.

Language: English
Publisher: ASA
Year: 2013
Proceedings: 21st International Congress on Acoustics
ISSN: 1939800x
Types: Conference paper
DOI: 10.1121/1.4799593
ORCIDs: Dau, Torsten

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis