About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Broadband energy squeezing and tunneling based on unidirectional modes

From

Nanchang University1

Department of Photonics Engineering, Technical University of Denmark2

Structured Electromagnetic Materials, Department of Photonics Engineering, Technical University of Denmark3

Southwest Medical University4

Energy squeezing is attractive for its potential applications in electromagnetic (EM) energy harvesting and optical communication. However, due to the Fabry-Perot resonance, only the EM waves with discrete frequencies can be squeezed and, as far as we know, in the previous energy-squeezing devices, stringent requirements of the materials or the geometrical shape are needed.

We note that the structures filled with epsilon-near-zero (ENZ) mediums as reported in some works can squeeze and tunnel EM waves at frequencies (e.g. plasma frequency). However, the group velocity is usually near zero, which means little EM information travels through the structures. In this paper, low-loss energy squeezing and tunneling (EST) based on unidirectional modes were demonstrated in YIG-based one-way waveguides at microwave frequencies.

According to our theoretical analysis and the simulations using the finite element method, broadband EST was achieved and the EM EST was observed even for extremely bended structures. Besides, similar EM EST was achieved in a realistic three-dimensional remanence-based one-way waveguide as well. The unidirectional mode-based EST paves the way for ultra-subwavelength EM focusing, enhanced nonlinear optics, and the design of numerous functional devices in integrated optical circuits such as phase modulator.

Language: English
Year: 2021
Pages: 2975-2984
ISSN: 21593930
Types: Journal article
DOI: 10.1364/OME.437468
ORCIDs: 0000-0002-4949-1483 , Wang, Yazhou , Xiao, Sanshui and 0000-0002-9960-1994

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis