About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Overhauser enhanced magnetic resonance imaging for tumor oximetry: coregistration of tumor anatomy and tissue oxygen concentration

From

Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA. murali@helix.nih.gov1

An efficient noninvasive method for in vivo imaging of tumor oxygenation by using a low-field magnetic resonance scanner and a paramagnetic contrast agent is described. The methodology is based on Overhauser enhanced magnetic resonance imaging (OMRI), a functional imaging technique. OMRI experiments were performed on tumor-bearing mice (squamous cell carcinoma) by i.v. administration of the contrast agent Oxo63 (a highly derivatized triarylmethyl radical) at nontoxic doses in the range of 2-7 mmol/kg either as a bolus or as a continuous infusion.

Spatially resolved pO(2) (oxygen concentration) images from OMRI experiments of tumor-bearing mice exhibited heterogeneous oxygenation profiles and revealed regions of hypoxia in tumors (<10 mmHg; 1 mmHg = 133 Pa). Oxygenation of tumors was enhanced on carbogen (95% O(2)/5% CO(2)) inhalation. The pO(2) measurements from OMRI were found to be in agreement with those obtained by independent polarographic measurements using a pO(2) Eppendorf electrode.

This work illustrates that anatomically coregistered pO(2) maps of tumors can be readily obtained by combining the good anatomical resolution of water proton-based MRI, and the superior pO(2) sensitivity of EPR. OMRI affords the opportunity to perform noninvasive and repeated pO(2) measurements of the same animal with useful spatial (approximately 1 mm) and temporal (2 min) resolution, making this method a powerful imaging modality for small animal research to understand tumor physiology and potentially for human applications.

Language: English
Publisher: The National Academy of Sciences
Year: 2002
Pages: 2216-21
ISSN: 10916490 and 00278424
Types: Journal article
DOI: 10.1073/pnas.042671399

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis