About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Enzymatic conversion of CO2 to CH3OH via reverse dehydrogenase cascade biocatalysis: Quantitative comparison of efficiencies of immobilized enzyme systems

From

Department of Chemical and Biochemical Engineering, Technical University of Denmark1

Center for BioProcess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark2

A designed biocatalytic cascade system based on reverse enzymatic catalysis by formate dehydrogenase (EC 1.2.1.2), formaldehyde dehydrogenase (EC 1.2.1.46), and alcohol dehydrogenase (EC 1.1.1.1) can convert carbon dioxide (CO2) to methanol (CH3OH) via formation of formic acid (CHOOH) and formaldehyde (CHOH) during equimolar cofactor oxidation of NADH to NAD+.

This reaction is appealing because it represents a double gain: (1) reduction of CO2 and (2) an alternative to fossil fuel based production of CH3OH. The present review evaluates the efficiency of different immobilized enzyme systems and reaction designs that have been explored for optimizing this sequential enzymatic conversion of CO2 to CH3OH, including multilayer microcapsules, bead scaffolds, cationic nanofibers, and membrane systems.

The recent progress within efficient cofactor regeneration, protein engineering of the enzymes for robustness, and advanced uses of membrane systems for enzyme reuse and product separation are assessed for large scale implementation of this biocatalytic reaction cascade. Industrial realization of enzymatic CO2 to CH3OH conversion including the option for reaping of formaldehyde and formate during the reaction warrants innovative development.

There is a particular need for development of i) better enzymes; ii) improved understanding of enzyme structure function aspects of reverse catalysis by dehydrogenases, iii) quantitative kinetic models of the enzymatic cascade reaction during simultaneous cofactor regeneration, iv) robust systems for regeneration of reducing equivalents.

Language: English
Year: 2017
Pages: 217-228
ISSN: 1873295x and 1369703x
Types: Journal article
DOI: 10.1016/j.bej.2017.08.011
ORCIDs: Pinelo, Manuel and Meyer, Anne S.

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis