About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Raman-active phonons in Bi2Sr2Ca1-xYxCu2O8+d (x=0-1): Effects of hole filling and internal pressure induced by Y doping for Ca, and implications for phonon assignments

From

Risø National Laboratory for Sustainable Energy, Technical University of Denmark

The phonon Raman spectra of Bi2Sr2Ca1-xYxCu2O8+d (x=0-1) have been investigated in a number of well-defined single-crystal and polycrystalline samples. From the polarization and Y-doping dependence, and from a comparison with previous reports on Bi-based cuprates, we identify the (6A(1g)+1B(1g)) symmetry modes that are Raman allowed within the ideal body-centered-tetragonal unit cell.

A large number of extra ''disorder-induced'' phonon bands are observed in the ab-plane polarized spectra. In contrast to most previous reports, we argue that the c-axis polarized phonon band around 629 cm(-1) is due to the O(2)(Sr)A(1g) vibration, while the exclusively ab-plane polarized band around 463 cm(-1) is induced by the O(3)(Bi)A(1g) vibration.

With increasing Y doping we find that the vibrational modes involving atoms in the CuO2 planes rapidly increase in intensity as a result of the reduced metallic screening in the hole-depleted Y-doped samples. We also find that Y substitution gives rise to a substantial hardening of the O(1)(Cu)A(1g) and B-1g phonons by similar to 40 cm(-1), whereas the O(2)(Sr)A(1g) phonon is found to soften by similar to 20 cm(-1), when x increases from 0 to 1.

The phonon frequency changes can be explained by the ''internal pressure'' induced by the decrease in the average Ca/Y ion size and an additional ''charge-transfer'' induced by the change in the Cu and Bi valences with Y doping.

Language: English
Year: 1996
Pages: 11796-11806
ISSN: 1550235x , 10980121 , 24699950 , 10953795 and 01631829
Types: Journal article
DOI: 10.1103/PhysRevB.53.11796

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis