About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Conference paper

Quantifying porosity, compressibility and permeability in Shale

From

Department of Civil Engineering, Technical University of Denmark1

Section for Geotechnics and Geology, Department of Civil Engineering, Technical University of Denmark2

Center for Energy Resources Engineering, Centers, Technical University of Denmark3

The Fjerritslev Formation in the Norwegian-Danish Basin forms the main seal to Upper Triassic-Lower Jurassic sandstone reservoirs. In order to estimate rock properties Jurassic shale samples from deep onshore wells in Danish basin were studied. Mineralogical analysis based on X-ray diffractometry (XRD) of shale samples show about 50% silt and high content of kaolinite in the clay fraction when compared with offshore samples from the Central Graben.

Porosity measurements from helium porosimetry-mercury immersion (HPMI), mercury injection capillary pressure (MICP) and nuclear magnetic resonance (NMR) show that, the MICP porosity is 9-10% points lower than HPMI and NMR porosity. Compressibility result shows that deep shale is stiffer in situ than normally assumed in geotechnical modelling and that static compressibility corresponds with dynamic one only at the begining of unloading stress strain data.

We found that Kozeny's modelled permeability fall in the same order of magnitude with measured permeability for shale rich in kaolinite but overestimates permeability by two to three orders of magnitudes for shale with high content of smectite. The empirical Yang and Aplin model gives good permeability estimate comparable to the measured one for shale rich in smectite.

This is probably because Yang and Aplin model was calibrated in London clay which is rich in smectite.

Language: English
Year: 2014
Proceedings: 4th EAGE Shale Workshop
Types: Conference paper
ORCIDs: Fabricius, Ida Lykke

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis