About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Heme isomers substantially affect heme's electronic structure and function

From

Department of Chemistry, Technical University of Denmark1

Inspection of heme protein structures in the protein data bank reveals four isomers of heme characterized by different relative orientations of the vinyl side chains; remarkably, all these have been reported in multiple protein structures. Density functional theory computations explain this as due to similar energy of the isomers but with a sizable (25 kJ mol-1) barrier to interconversion arising from restricted rotation around the conjugated bonds.

The four isomers, EE, EZ, ZE, and ZZ, were then investigated as 4-coordinate hemes, as 5-coordinate deoxyhemes, in 6-coordinate O2-adducts of globins and as compound I intermediates typical of heme peroxidases. Substantial differences were observed in electronic properties relevant to heme function: notably, the spin state energy gap of O2-heme adducts, important for fast reversible binding of O2, depends on the isomer state, and O2-binding enthalpies change by up to 16 kJ mol-1; redox potentials change by up to 0.2 V depending on the isomer, and the doublet-quartet energy splitting of compound I, central to "two-state" reactivity, is affected by up to ∼15 kJ mol-1.

These effects are consistently seen with three distinct density functionals, i.e. the effects are not method-dependent. Thus, the nature of the isomer state is an important but overlooked feature of heme chemistry and function, and previous and future studies of hemes may be reconsidered in this new context.

Language: English
Publisher: The Royal Society of Chemistry
Year: 2017
Pages: 22355-22362
ISSN: 14639084 and 14639076
Types: Journal article
DOI: 10.1039/c7cp03285d
ORCIDs: Kepp, Kasper Planeta

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis