About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Deleting the para-nitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on D-xylose

From

Department of Systems Biology, Technical University of Denmark1

Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark2

Overexpression of D-xylulokinase in Saccharomyces cerevisiae engineered for assimilation of xylose results in growth inhibition that is more pronounced at higher xylose concentrations. Mutants deficient in the para-nitrophenyl phosphatase, PHO13, resist growth inhibition on xylose. We studied this inhibition under aerobic growth conditions in well-controlled bioreactors using engineered S. cerevisiae CEN.PK.

Growth on glucose was not significantly affected in pho13 Delta mutants, but acetate production increased by 75%. Cell growth, ethanol production, and xylose consumption all increased markedly in pho13 Delta mutants. The specific growth rate and rate of specific xylose uptake were approximately 1.5 times higher in the deletion strain than in the parental strain when growing on glucose-xylose mixtures and up to 10-fold higher when growing on xylose alone.

In addition to showing higher acetate levels, pho13 Delta mutants also produced less glycerol on xylose, suggesting that deletion of Pho13p could improve growth by altering redox levels when cells are grown on xylose.

Language: English
Year: 2008
Pages: 360-369
ISSN: 10967184 and 10967176
Types: Journal article
DOI: 10.1016/j.ymben.2007.12.002

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis