About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Residence Time Distributions in a Cold, Confined Swirl Flow.: Implications for Chemical Engineering Combustion Modelling : Implications for chemical engineering combustion modelling

From

Department of Chemical and Biochemical Engineering, Technical University of Denmark1

Department of Energy Engineering, Technical University of Denmark2

Residence time distributions (RTD) in a confined, cold swirling flow have been measured with a fast-response probe and helium as a tracer. The test-rig represented a scaled down version of a burner. The effect of variation of flow velocities and swirl angle on the flow pattern in the near-burner zone of the laboratory furnace-model were studied.

RTD results have been used to derive a chemical reaction engineering model for the mixing process. The model is based on a combination of plug flow reactors and continuous stirred tank reactors, which represent the main flow characteristics in regard of mixing in the near burner zone. The model is well suited to handle mixing in complex flows with several zones of recirculation.

Simulated RTD curves compared well with those of the experiment at the two swirl numbers studied. Modelling of the mixing is a prerequisite to handle the chemistry. A simplified, well characterised flow pattern makes it possible to investigate the importance of mixing intensity on the (pollution) chemistry in furnaces.

The reactor model developed here will be the basis for the development of a chemical reaction engineering combustion model.

Language: English
Year: 1997
Pages: 2743-2756
ISSN: 18734405 and 00092509
Types: Journal article
DOI: 10.1016/S0009-2509(97)00086-9
ORCIDs: Glarborg, Peter , Dam-Johansen, Kim and Larsen, Poul Scheel

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis