About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Optical properties of site-selectively grown inas/inp quantum dots with predefined positioning by block copolymer lithography

From

Wrocław University of Science and Technology1

Nanophotonic Devices, Department of Photonics Engineering, Technical University of Denmark2

Department of Photonics Engineering, Technical University of Denmark3

Centre of Excellence for Silicon Photonics for Optical Communications, Centers, Technical University of Denmark4

The InAs/InP quantum dots (QDs) are investigated by time-integrated (PL) and timeresolved photoluminescence (TRPL) experiments. The QDs are fabricated site-selectively by droplet epitaxy technique using block copolymer lithography. The estimated QDs surface density is ∼1.5 × 1010 cm−2 . The PL emission at T = 300 K is centered at 1.5 µm.

Below T = 250 K, the PL spectrum shows a fine structure consisting of emission modes attributed to the multimodal QDs size distribution. Temperature-dependent PL reveals negligible carrier transfer among QDs, suggesting good carrier confinement confirmed by theoretical calculations and the TRPL experiment.

The PL intensity quench and related energies imply the presence of carrier losses among InP barrier states before carrier capture by QD states. The TRPL experiment highlighted the role of the carrier reservoir in InP. The elongation of PL rise time with temperature imply inefficient carrier capture from the reservoir to QDs.

The TRPL experiment at T = 15 K reveals the existence of two PL decay components with strong dispersion across the emission spectrum. The decay times dispersion is attributed to different electron-hole confinement regimes for the studied QDs within their broad distribution affected by the size and chemical content inhomogeneities.

Language: English
Publisher: MDPI
Year: 2021
Pages: 1-17
ISSN: 19961944
Types: Journal article
DOI: 10.3390/ma14020391
ORCIDs: Semenova, Elizaveta , 0000-0002-2154-896X , 0000-0002-0970-7825 and 0000-0002-5260-7360

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis