About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Conference paper · Journal article

Analysing wind farm efficiency on complex terrains

From

University of Perugia1

Department of Wind Energy, Technical University of Denmark2

Fluid Mechanics, Department of Wind Energy, Technical University of Denmark3

The stratification of the atmospheric boundary layer (ABL) is classified in terms of the M-O length and subsequently used to determine the relationship between ABL stability and the fatigue loads of a wind turbine located inside an offshore wind farm. Recorded equivalent fatigue loads, representing blade-bending and tower bottom bending, are combined with the operational statistics from the instrumented wind turbine as well as with meteorological statistics defining the inflow conditions.

Only a part of all possible inflow conditions are covered through the approximately 8200 hours of combined measurements. The fatigue polar has been determined for an (almost) complete 360° inflow sector for both load sensors, representing mean wind speeds below and above rated wind speed, respectively, with the inflow conditions classified into three different stratification regimes: unstable, neutral and stable conditions.

In general, impact of ABL stratification is clearly seen on wake affected inflow cases for both blade and tower fatigue loads. However, the character of this dependence varies significantly with the type of inflow conditions – e.g. single wake inflow or multiple wake inflow.

Language: English
Publisher: IOP Publishing
Year: 2014
Pages: 012142
Proceedings: 5th International Conference on The Science of Making Torque from Wind 2014European Academy of Wind Energy : The Science of Making Torque from Wind
ISSN: 17426596 and 17426588
Types: Conference paper and Journal article
DOI: 10.1088/1742-6596/524/1/012142
ORCIDs: Hansen, Kurt Schaldemose

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis