About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Oxygen Nonstoichiometry and Defect Chemistry Modeling of Ce0.8Pr0.2O2-delta

From

Electrochemistry, Fuel Cells and Solid State Chemistry Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark1

Fuel Cells and Solid State Chemistry Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark2

Risø National Laboratory for Sustainable Energy, Technical University of Denmark3

Electroceramics, Fuel Cells and Solid State Chemistry Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark4

The oxygen nonstoichiometry (delta) of Ce0.8Pr0.2O2−delta has been measured as a function of PO2 at temperatures between 600 and 900°C by coulometric titration and thermogravimetry. An ideal solution defect model, a regular solution model, and a defect association model, taking into account the association of reduced dopant species and oxygen vacancies, were unable to reproduce the experimental results.

However, excellent agreement with the experimentally determined oxygen nonstoichiometry could be achieved when using either a nonideal solution model with an excess enthalpic term linear in delta (DeltaHPrexc=aHdelta) and a completely random distribution of defects (referred to as “delta-linear”), or a “generalized delta-linear” solution model, where the excess Gibbs energy change in the reduction reaction of the dopant linearly varies with delta (DeltaGPrexc=aGdelta).

A comparison of the partial molar enthalpy and entropy of oxidation, estimated from the defect models with those determined directly from the oxygen nonstoichiometry, suggests that the delta-linear solution model is the most appropriate in accounting for the observed nonideal reduction behavior of Pr.

Language: English
Publisher: The Electrochemical Society
Year: 2010
Pages: B481
ISSN: 00134651 and 19457111
Types: Journal article
DOI: 10.1149/1.3288241
ORCIDs: Chatzichristodoulou, Christodoulos and Hendriksen, Peter Vang

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis