About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Interface strength and degradation of adhesively bonded porous aluminum oxides

From

Delft University of Technology1

Fokker Aerostructures BV.2

Department of Mechanical Engineering, Technical University of Denmark3

Materials and Surface Engineering, Department of Mechanical Engineering, Technical University of Denmark4

For more than six decades, chromic acid anodizing has been the main step in the surface treatment of aluminum for adhesivelybonded aircraft structures. Soon this process, known for producing a readily adherent oxide with an excellent corrosion resistance,will be banned by strict international environmental and health regulations.

Replacing this traditional process in a high-demandingand high-risk industry such as aircraft construction requires an in-depth understanding of the underlying adhesion and degradationmechanisms at the oxide/resin interface resulting from alternative processes. The relationship between the anodizing conditions insulfuric and mixtures of sulfuric and phosphoric acid electrolytes and the formation and durability of bonding under variousenvironmental conditions was investigated.

Scanning electron microscopy was used to characterize the oxide features. Selectedspecimens were studied with transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy to measureresin concentration within structurally different porous anodic oxide layers as a function of depth.

Results show that there are twocritical morphological aspects for strong and durable bonding. First, a minimum pore size is pivotal for the formation of a stableinterface, as reflected by the initial peel strengths. Second, the increased surface roughness of the oxide/resin interface caused byextended chemical dissolution at higher temperature and higher phosphoric acid concentration is crucial to assure bond durabilityunder water ingress.

There is, however, an upper limit to the beneficial amount of anodic dissolution above which bonds are pronefor corrosive degradation. Morphology is, however, not the only prerequisite for good bonding and bond performance alsodepends on the oxides’ chemical composition.

Language: English
Publisher: Nature Publishing Group UK
Year: 2017
ISSN: 23972106
Types: Journal article
DOI: 10.1038/s41529-017-0007-0
ORCIDs: Gudla, Visweswara Chakravarthy , Ambat, Rajan and 0000-0003-1810-5145

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis