About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Conference paper

Transmission electron microscopy characterization of photocatalysts for water splitting

From

Center for Electron Nanoscopy, Technical University of Denmark1

Department of Physics, Technical University of Denmark2

Surface Physics and Catalysis, Department of Physics, Technical University of Denmark3

Department of Photonics Engineering, Technical University of Denmark4

Center for Individual Nanoparticle Functionality, Centers, Technical University of Denmark5

As a result of diminishing fossil fuel reserves, there is an increasing need to switch energy dependence to renewable resources such as sunlight. Photocatalysts provide a viable route for converting solar energy into chemical bonds. In order to optimize the performance of such materials, it is necessary to understand the fundamentals of their reaction mechanisms, chemical behavior, structure and morphology before, during and after reaction using in situ investigations.

Here, we focus on the in situ characterization of photocatalysts [1] in an environmental transmission electron microscope (ETEM) [2]. Such fundamental insight can be used for further material optimization with respect to performance and stability [3]. In this work, we combine conventional TEM analysis of photocatalysts with environmental TEM (ETEM) and photoactivation using light.

A novel type of TEM specimen holder that enables in situ illumination is developed to study light-induced phenomena in photoactive materials at the nanoscale under working conditions. Our experiments are aimed at exposing a specimen to light and detecting resulting microstructural and chemical changes using in situ TEM techniques.

It is important to investigate photoactive materials under light illumination in order to remove the effects associated with handling of the specimen between ex situ reactions and TEM experiments. Two representative photoinduced phenomena are studied: the photodegredation of Cu2O and the photodepositon of Pt onto a GaN:ZnO photocatalyst (Figure 1).

Language: English
Year: 2012
Proceedings: 2nd International Symposium on Advanced Electron Microscopy for Catalysis and Energy Storage Materials
Types: Conference paper
ORCIDs: Wagner, Jakob Birkedal and Hansen, Thomas Willum

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis