About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article · Preprint article

Theoretical study of time-dependent, ultrasound-induced acoustic streaming in microchannels

From

Technical University of Denmark1

Department of Physics, Technical University of Denmark2

Biophysics and Fluids, Department of Physics, Technical University of Denmark3

Based on first- and second-order perturbation theory, we present a numerical study of the temporal buildup and decay of unsteady acoustic fields and acoustic streaming flows actuated by vibrating walls in the transverse cross-sectional plane of a long straight microchannel under adiabatic conditions and assuming temperature-independent material parameters.

The unsteady streaming flow is obtained by averaging the time-dependent velocity field over one oscillation period, and as time increases, it is shown to converge towards the well-known steady time-averaged solution calculated in the frequency domain. Scaling analysis reveals that the acoustic resonance builds up much faster than the acoustic streaming, implying that the radiation force may dominate over the drag force from streaming even for small particles.

However, our numerical time-dependent analysis indicates that pulsed actuation does not reduce streaming significantly due to its slow decay. Our analysis also shows that for an acoustic resonance with a quality factor Q, the amplitude of the oscillating second-order velocity component is Q times larger than the usual second-order steady time-averaged velocity component.

Consequently, the well-known criterion v1≪cs for the validity of the perturbation expansion is replaced by the more restrictive criterion v1≪cs/Q. Our numerical model is available as supplemental material in the form of comsol model files and matlab scripts.

Language: English
Year: 2015
Pages: 063018
ISSN: 15502376 , 15393755 , 24700053 and 24700045
Types: Journal article and Preprint article
DOI: 10.1103/physreve.92.063018
ORCIDs: Bruus, Henrik
Keywords

physics.flu-dyn

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis