About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Extreme Geomagnetic Storms – 1868–2010

From

National Space Institute, Technical University of Denmark1

Astrophysics and Atmospheric Physics, National Space Institute, Technical University of Denmark2

Royal Observatory of Belgium3

University of Zagreb4

Royal Belgian Institute for Space Aeronomy5

National Observatory of Athens6

University of Graz7

National Science Foundation8

We present the first large statistical study of extreme geomagnetic storms basedon historical data from the time period 1868 – 2010. This article is the first of two companionpapers. Here we describe how the storms were selected and focus on their near-Earth characteristics.The second article presents our investigation of the corresponding solar eventsand their characteristics.

The storms were selected based on their intensity in the aa index,which constitutes the longest existing continuous series of geomagnetic activity. They areanalyzed statistically in the context of more well-known geomagnetic indices, such as theKp and Dcx/Dst index. This reveals that neither Kp nor Dcx/Dst provide a comprehensivegeomagnetic measure of the extreme storms.

We rank the storms by including long seriesof single magnetic observatory data. The top storms on the rank list are the New York Railroadstorm occurring in May 1921 and the Quebec storm from March 1989. We identifykey characteristics of the storms by combining several different available data sources, listsof storm sudden commencements (SSCs) signifying occurrence of interplanetary shocks,solar wind in-situ measurements, neutron monitor data, and associated identifications ofForbush decreases as well as satellite measurements of energetic proton fluxes in the near-Earth space environment.

From this we find, among other results, that the extreme storms arevery strongly correlated with the occurrence of interplanetary shocks (91 – 100 %), Forbushdecreases (100 %), and energetic solar proton events (70 %). A quantitative comparison ofthese associations relative to less intense storms is also presented.

Most notably, we findthat most often the extreme storms are characterized by a complexity that is associated with multiple, often interacting, solar wind disturbances and that they frequently occur when thegeomagnetic activity is already elevated. We also investigate the semiannual variation instorm occurrence and confirm previous findings that geomagnetic storms tend to occur lessfrequently near solstices and that this tendency increases with storm intensity.

However, wefind that the semiannual variation depends on both the solar wind source and the storm level.Storms associated with weak SSC do not show any semiannual variation, in contrast to weakstorms without SSC.

Language: English
Publisher: Springer Netherlands
Year: 2016
Pages: 1447-1481
Journal subtitle: A Journal for Solar and Solar-stellar Research and the Study of Solar Terrestrial Physics
ISSN: 1573093x and 00380938
Types: Journal article
DOI: 10.1007/s11207-016-0897-y
ORCIDs: Vennerstrøm, Susanne and Leer, Kristoffer

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis