About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Hydraulic jumps in a channel

From

Biophysics and Fluids, Department of Physics, Technical University of Denmark1

Department of Physics, Technical University of Denmark2

Center for Fluid Dynamics, Centers, Technical University of Denmark3

We present a study of hydraulic jumps with flow predominantly in one direction, created either by confining the flow to a narrow channel with parallel walls or by providing an inflow in the form of a narrow sheet. In the channel flow, we find a linear height profile upstream of the jump as expected for a supercritical one-dimensional boundary layer flow, but we find that the surface slope is up to an order of magnitude larger than expected and independent of flow rate.

We explain this as an effect of turbulent fluctuations creating an enhanced eddy viscosity, and we model the results in terms of Prandtl's mixing-length theory with a mixing length that is proportional to the height of the fluid layer. Using averaged boundary-layer equations, taking into account the friction with the channel walls and the eddy viscosity, the flow both upstream and downstream of the jump can be understood.

For the downstream subcritical flow, we assume that the critical height is attained close to the channel outlet. We use mass and momentum conservation to determine the position of the jump and obtain an estimate which is in rough agreement with our experiment. We show that the averaging method with a varying velocity profile allows for computation of the flow-structure through the jump and predicts a separation vortex behind the jump, something which is not clearly seen experimentally, probably owing to turbulence.

In the sheet flow, we find that the jump has the shape of a rhombus with sharply defined oblique shocks. The experiment shows that the variation of the opening angle of the rhombus with flow rate is determined by the condition that the normal velocity at the jump is constant.

Language: English
Publisher: Cambridge University Press
Year: 2009
Pages: 71-87
ISSN: 14697645 and 00221120
Types: Journal article
DOI: 10.1017/S0022112008004540
ORCIDs: Andersen, Anders Peter and Bohr, Tomas

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis