About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Elastic-plastic properties of titanium and its alloys modified by fibre laser surface nitriding for orthopaedic implant applications

From

Technical University of Denmark1

Queen's University Belfast2

Materials and Surface Engineering, Department of Mechanical Engineering, Technical University of Denmark3

Department of Mechanical Engineering, Technical University of Denmark4

Laser nitriding is one of the most promising approaches to improve wear resistance of Ti alloy surfaces and may extend the use in orthopaedic implants. In this study, three types of Ti alloys, namely alpha commercially pure Ti (“TiG2”), alpha-beta Ti–6Al–4V (“TiG5”), and beta Ti-35.5Nb-7.3Zr-5.7Ta (“βTi”), were subjected to an open-air laser nitriding treatment.

Essential elastic-plastic mechanical properties including elastic modulus, hardness, elastic energy, plasticity index, and hardness-to-elasticity ratio of the laser-treated Ti alloys were characterized using nanoindentation experiment. The results showed that the elastic modulus, hardness and elastic energy values of all Ti samples significantly increased in the nitrided layer compared to respective bare substrates for all three Ti materials.

Across different Ti samples, βTi sustained its relatively lower elastic modulus, but presented comparable hardness, elastic energy, plasticity index, as well as hardness-to-elasticity ratio in the nitrided layer compared to the other two Ti alloys. Overall, amongst three medical grade Ti alloys in this study, βTi appeared as the most appealing candidate for joint replacement applications even solely in view of mechanical compatibility when combined with surface laser nitriding.

Nevertheless, laser nitriding treatment in this study tended to cause a residual compressive stress on all Ti alloys as displayed by cracks developed in the nitrided layer and analyzed on βTi by X-ray diffraction (XRD) and further nanoindentation tests.

Language: English
Year: 2021
Pages: 104802
ISSN: 18780180 and 17516161
Types: Journal article
DOI: 10.1016/j.jmbbm.2021.104802
ORCIDs: Lee, Seunghwan

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis