About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Conference paper

Real-Time Simulation of Ship-Structure and Ship-Ship Interaction

In Proceedings of the 3rd International Conference on Ship Manoeuvring in Shallow and Confined Water 2013 — 2013
From

Department of Applied Mathematics and Computer Science, Technical University of Denmark1

Scientific Computing, Department of Applied Mathematics and Computer Science, Technical University of Denmark2

Department of Mechanical Engineering, Technical University of Denmark3

Fluid Mechanics, Coastal and Maritime Engineering, Department of Mechanical Engineering, Technical University of Denmark4

FORCE Technology5

This paper gives the status of the development of a ship-hydrodynamic model for real-time ship-wave calculation and ship-structure and ship-ship interaction in a full mission marine simulator. The hydrodynamic model is based on potential flow theory, linear or non-linear free surface boundary condition and higher-order accurate numerical approximations.

The equations presented facilitate both Neumann-Kelvin and double-body linearizations. The body boundary condition on the ship hull is approximated by a static and dynamic moving pressure distribution. The pressure distribution method is used, because it is simple, easy to implement and computationally efficient.

Multiple many-core graphical processing units (GPUs) are used for parallel execution and the model is implemented using a combination of C/C++, CUDA and MPI. Two ship hydrodynamic cases are presented: Kriso Container Carrier at steady forward speed and lock entrance of a TEU 12.000 Container Carrier.

These calculations reveal that the pressure distribution model is a too simple approximation of the body boundary condition and that it has the limitations of a flat-ship approximation. It is necessary to investigate more accurate approximations of the body boundary condition, which does not compromise the overall computational efficiency.

Language: English
Year: 2013
Proceedings: 3rd International Conference on Ship Manoeuvring in Shallow and Confined Water
Types: Conference paper
ORCIDs: Bingham, Harry B. and Engsig-Karup, Allan Peter

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis