About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Accelerated apoptosis of neutrophils in familial Mediterranean fever

From

National Academy of Sciences of the Republic of Armenia1

National Veterinary Institute, Technical University of Denmark2

Section for Bacteriology, Pathology and Parasitology, National Veterinary Institute, Technical University of Denmark3

Yerevan State Medical University4

Scientific Center of Drug and Medical Technology Expertise after Academician E. Gabrielyan CJSC5

The causative mutations for familial Mediterranean fever (FMF) are located in the MEFV gene, which encodes pyrin. Pyrin modulates the susceptibility to apoptosis via its PYD domain, but how the mutated versions of pyrin affect apoptotic processes are poorly understood. Spontaneous and induced rates of systemic neutrophil apoptosis as well as the levels of proteins involved in apoptosis were investigated ex vivo in patients with FMF using flow cytometry and RT-qPCR.

The freshly collected neutrophils from the patients in FMF remission displayed a significantly larger number of cells spontaneously entering apoptosis compared to control (6.27 ± 2.14 vs. 1.69 ± 0.18%). This elevated ratio was retained after 24 h incubation of neutrophils in the growth medium (32.4 ± 7.41 vs. 7.65 ± 1.32%).

Correspondingly, the mRNA level for caspase-3 was also significantly increased under these conditions. In response to the inducing agents, the neutrophils from FMF patients also displayed significantly elevated apoptotic rates compared to control. The elevated rates, however, can be largely explained by the higher basal ratio of apoptotic cells in the former group.

Monitoring of several proteins involved in apoptosis has not revealed any conventional mechanisms contributing to the enhanced apoptotic rate of neutrophils in FMF. Although the exact molecular mechanisms of accelerated neutrophil apoptosis in FMF remain unknown, it may provide a protection against excessive inflammation and tissue damage due to a massive infiltration of neutrophils in the acute period of the disease.

Language: English
Publisher: Frontiers Media S.A.
Year: 2015
Pages: 239
ISSN: 16643224
Types: Journal article
DOI: 10.3389/fimmu.2015.00239

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis