About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Myoendothelial coupling through Cx40 contributes to EDH-induced vasodilation in murine renal arteries: evidence from experiments and modelling

From

Department of Electrical Engineering, Technical University of Denmark1

Biomedical Engineering, Department of Electrical Engineering, Technical University of Denmark2

Lübeck University of Applied Sciences3

University of Copenhagen4

Regulation of renal vascular resistance plays a major role in controlling arterial blood pressure. The endothelium participates in this regulation as endothelial derived hyperpolarization plays a significant role in smaller renal arteries and arterioles, but the exact mechanisms are still unknown. To investigate the role of vascular gap junctions and potassium channels in the renal endothelial derived hyperpolarization.

In interlobar arteries from wild-type and connexin40 knockout mice, we assessed the role of calcium-activated small (SK) and intermediate (IK) conductance potassium channels. The role of inward rectifier potassium channels (Kir) and Na+ /K+ -ATPases was evaluated as was the contribution from gap junctions.

Mathematical models estimating diffusion of ions and electrical coupling in myoendothelial gap junctions were used to interpret the results. Lack of connexin40 significantly reduces renal endothelial hyperpolarization. Inhibition of SK and IK channels significantly attenuated renal EDH to a similar degree in wild-type and knockout mice.

Inhibition of Kir and Na+ /K+ -ATPases affected the response in wild-type and knockout mice but at different levels of stimulation. The model confirms that activation of endothelial SK and IK channels generates a hyperpolarizing current that enters the vascular smooth muscle cells. Also, extracellular potassium increases sufficiently to activate Kir and Na+ /K+ -ATPases.

Renal endothelial hyperpolarization is mainly initiated by activation of IK and SK channels. The model shows that hyperpolarization can spread through myoendothelial gap junctions but enough potassium is released to activate Kir and Na+ /K+ -ATPases. Reduced coupling seems to shift the signalling pathway towards release of potassium.

However, an alternative pathway also exists and needs to be investigated.

Language: English
Year: 2017
ISSN: 17481716 and 17481708
Types: Journal article
DOI: 10.1111/apha.12906
ORCIDs: 0000-0002-9984-3125 and Brasen, Jens Christian

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis