About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Micro-EDM process modeling and machining approaches for minimum tool electrode wear for fabrication of biocompatible micro-components

From

Department of Mechanical Engineering, Technical University of Denmark1

Micro-electrical discharge machining (micro-EDM) is a potential non-contact method for fabrication of biocompatible micro devices. This paper presents an attempt to model the tool electrode wear in micro-EDM process using multiple linear regression analysis (MLRA) and artificial neural networks (ANN).

The governing micro-EDM factors chosen for this investigation were: voltage (V), current (I), pulse on time (Ton) and pulse frequency (f). The proposed predictive models generate a functional correlation between the tool electrode wear rate (TWR) and the governing micro-EDM factors. A multiple linear regression model was developed for prediction of TWR in ten steps at a significance level of 90%.

The optimum architecture of the ANN was obtained with 7 hidden layers at an R-sq value of 0.98. The predicted values of TWR using ANN matched well with the practically measured and calculated values of TWR. Based on the proposed soft computing-based approach towards biocompatible micro device fabrication, a condition for the minimum tool electrode wear rate (TWR) was achieved.

Language: English
Year: 2017
Pages: 97-111
ISSN: 18957595 and 23918071
Types: Journal article
ORCIDs: Puthumana, Govindan

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis