About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Developing and testing a computer vision method to quantify 3D movements of bottom-set gillnets on the seabed

Edited by O’Neill, Finbarr

From

National Institute of Aquatic Resources, Technical University of Denmark1

Section for Ecosystem based Marine Management, National Institute of Aquatic Resources, Technical University of Denmark2

Aalborg University3

Gillnets are one of the most widely used fishing gears, but there is limited knowledge about their habitat effects, partly due to the lack of methodology to quantify such effects. A stereo imaging method was identified and adapted to quantify the dynamic behaviour of gillnets in-situ. Two cameras took synchronized images of the gear from slightly different perspectives, allowing to estimate the distance from the observation unit to the gear such as in the human 3D vision.

The sweeping motion on the seabed and the penetration into the sediment of the leadline of light and heavy commercial bottom gillnets deployed in sandy habitats in the Danish coastal plaice fishery were assessed. The direct physical disruption of the seabed was minimal as the leadline was not penetrating into the seabed.

Direct damage to the benthos could however originate from the sweeping movements of the nets, which were found to be higher than usually estimated by experts, up to about 2 m. The sweeping movements were for the most part in the order of magnitude of 10 cm, and resulted in a total swept area per fishing operation lower than any of the hourly swept area estimated for active fishing gears.

Whereas the general perception is that heavy gears are more destructive to the habitat, light nets were moving significantly more than heavy ones. The established methodology could be further applied to assess gear dynamic behaviour in situ of other static gears.

Language: English
Publisher: Oxford University Press
Year: 2018
Pages: 814-824
ISSN: 10959289 and 10543139
Types: Journal article
DOI: 10.1093/icesjms/fsx194
ORCIDs: Savina, Esther and Krag, Ludvig Ahm

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis