About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Conference paper

Validation of Numerical Models of the Offshore Wind Turbine From the Alpha Ventus Wind Farm Against Full-Scale Measurements Within OC5 Phase III

In International Conference on Offshore Mechanics and Arctic Engineering — 2019
From

Fraunhofer Institute for Wind Energy and Energy System Technology1

Nippon Kaiji Kyokai2

4subsea AS3

Norwegian University of Science and Technology4

Simis AS5

University of Ulsan6

Polytechnic University of Catalonia7

Siemens Industry Software8

Envision Energy China Ltd.9

China General Certification Center10

DNV GL Group11

National Renewable Energy Laboratory12

University of Stuttgart13

OWEC Tower AS14

Wind turbine loads & control, Department of Wind Energy, Technical University of Denmark15

Department of Wind Energy, Technical University of Denmark16

Électricité de France S.A.17

IFP Énergies nouvelles18

PRINCIPIA19

...and 9 more

The main objective of the Offshore Code Comparison Collaboration Continuation, with Correlation (OC5) project is validation of aero-hydro-servo-elastic simulation tools for offshore wind turbines (OWTs) through comparison of simulated results to the response data of physical systems. Phase III of the OC5 project validates OWT models against the measurements recorded on a Senvion 5M wind turbine supported by the OWEC Quattropod from the alpha ventus offshore wind farm.

The following operating conditions of the wind turbine were chosen for the validation: (1) Idling below the cut-in wind speed; (2) Rotor-nacelle assembly (RNA) rotation maneuver below the cut-in wind speed; (3) Power production below and above the rated wind speed; and (4) Shutdown. A number of validation load cases were defined based on these operating conditions.

The following measurements were used for validation: (1) Strains and accelerations recorded on the support structure; (2) Pitch, yaw, and azimuth angles, generator speed, and electrical power recorded from the RNA. Strains were not directly available from the majority of the OWT simulation tools. Therefore, strains were calculated based on out-of-plane bending moments, axial forces, and cross-sectional properties of the structural members.

Also, a number of issues arose during the validation: (1) The need for a thorough quality check of sensor measurements; (2) The sensitivity of the turbine loads to the controller and airfoil properties, which were only approximated in the modeling approach; (3) The importance of estimating and applying an appropriate damping value for the structure; and (4) The importance of wind characteristics beyond turbulence on the loads.

The simulation results and measurements were compared in terms of time series, discrete Fourier transforms, power spectral densities, probability density functions of strains and accelerometers. A good match was achieved between the measurements and models set up by OC5 Phase III participants.

Language: English
Publisher: The American Society of Mechanical Engineers (ASME)
Year: 2019
Proceedings: ASME 38th International Conference on Ocean, Offshore and Arctic Engineering
ISBN: 0791858898 and 9780791858899
Types: Conference paper
DOI: 10.1115/OMAE2019-95429
ORCIDs: Galinos, Christos

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis