About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Enhancement of NOx removal performance for (La0.85Sr0.15)0.99MnO3/Ce0.9Gd0.1O1.95 electrochemical cells by NOx storage/reduction adsorption layers

From

Department of Energy Conversion and Storage, Technical University of Denmark1

Fundamental Electrochemistry, Department of Energy Conversion and Storage, Technical University of Denmark2

This study investigated the effect of adding a NOx adsorption layer to the cathode of an electrochemical cell on the removal of NOx from gaseous mixtures. The cathode was a composite of (La0.85Sr0.15)0.99MnO3 (LSM15) and Ce0.9Gd0.1O1.95 (CGO10). Two different kinds of adsorption layers, K–Pt–Al2O3 layer and Ba–Pt–Al2O3 layer (known as NOx storage/reduction (NSR) catalyst), were studied.

The effects of the NSR adsorption layers on the electrode processes were characterized by electrochemical impedance spectroscopy (EIS). Both adsorption layers increased the reduction of NOx to N2 in an atmosphere that contained only NO. When O2 was present with NO in the atmosphere, the K–Pt–Al2O3 adsorption layer significantly enhanced the conversion of NOx to N2, but the Ba–Pt–Al2O3 adsorption layer had no effect.

The selective removal of NOx under O2-rich conditions was achieved by modifying the LSM15/CGO10 cell with a suitable NSR adsorption layer. The improvement for NOx reduction by the adsorption layers was mainly contributed by the promotion of the adsorption and surface diffusion of NOx species at/near the triple phase boundary (TPB) regions of the electrode and probably the formation of a short and effective reaction path for NOx reduction.

A stronger capability for oxidizing NO and/or trapping NOx under the test conditions may have contributed to the superior performance of the K–Pt–Al2O3 adsorption layer relative to the Ba–Pt–Al2O3 layer. © 2012 Elsevier Ltd. All rights reserved.

Language: English
Year: 2013
Pages: 482-491
ISSN: 18733859 and 00134686
Types: Journal article
DOI: 10.1016/j.electacta.2012.12.041
ORCIDs: Kammer Hansen, Kent

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis