About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Effects of compound-specific transverse mixing on steady-state reactive plumes: Insights from pore-scale simulations and Darcy-scale experiments

From

Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA1

Center for Applied Geosciences, University of Tübingen, Tübingen, Germany2

Department of Civil and Environmental Engineering, University of Trento, Trento, Italy3

Transverse mixing is critical for reactions in porous media and recent studies have shown that to characterize such mixing at the Darcy scale a nonlinear compound-specific parameterization of transverse dispersion is necessary. We investigate the effectiveness of this description of transverse mixing in predicting reactive transport.

We perform pore-scale numerical simulations and flow-through laboratory experiments to study mixing-limited reactions with continuous injection of reactants that result in steady-state reactive plumes. We consider product mass flux and reactant plume lengths as metrics of reactive transport. This study shows that the nonlinear parameterization of transverse dispersion consistently predicts both product mass flux and reactant plume extents across two orders of magnitude of mean flow velocities.

In contrast, the classical linear parameterization of transverse dispersion, assuming a constant dispersivity as a property of the porous medium, could not consistently predict either indicator with great accuracy. Furthermore, the linear parameterization of transverse dispersion predicts an asymptotic (constant) plume length with increasing velocity while the nonlinear parameterization indicates that the plume length increases with the square root of the velocity.

Both the pore-scale model simulations and the laboratory experiments of mixing-limited reactive transport show the latter relationship.

Language: English
Year: 2012
Pages: 1-10
ISSN: 18729657 and 03091708
Types: Journal article
DOI: 10.1016/j.advwatres.2012.12.007

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis