About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article · Preprint article

The maximum theoretical performance of unconcentrated solar photovoltaic and thermoelectric generator systems

From

Department of Energy Conversion and Storage, Technical University of Denmark1

Electrofunctional materials, Department of Energy Conversion and Storage, Technical University of Denmark2

The maximum efficiency for photovoltaic (PV) and thermoelectric generator (TEG) systems without concentration is investigated. Both a combined system where the TEG is mounted directly on the back of the PV and a tandem system where the incoming sunlight is split, and the short wavelength radiation is sent to the PV and the long wavelength to the TEG, are considered.

An analytical model based on the Shockley-Queisser efficiency limit for PVs and the TEG figure of merit parameter zT is presented. It is shown that for non-concentrated sunlight, even if the TEG operates at the Carnot efficiency and the PV performance is assumed independent of temperature, the maximum increase in efficiency is 4.5 percentage points (pp.) for the combined case and 1.8 pp. for the tandem case compared to a stand alone PV.

For a more realistic case with a temperature dependent PV and a realistic TEG, the gain in performance is much lower. For the combined PV and TEG system it is shown that a minimum zT value is needed in order for the system to be more efficient than a stand alone PV system.

Language: English
Year: 2017
Pages: 264-268
ISSN: 18792227 and 01968904
Types: Journal article and Preprint article
DOI: 10.1016/j.enconman.2017.11.009
ORCIDs: Bjørk, Rasmus and Nielsen, Kaspar Kirstein
Other keywords

physics.app-ph

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis