About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Conference paper

Cm-scale Heterogeneity in Degradation - Potential Impact on Leaching of MCPA through a Variably-Saturated Macroporous Clayey Till

From

Department of Environmental Engineering, Technical University of Denmark1

Geological Survey of Denmark and Greenland2

Water Resources Engineering, Department of Environmental Engineering, Technical University of Denmark3

Environmental Chemistry, Department of Environmental Engineering, Technical University of Denmark4

Recent research has revealed a large variation in pesticide mineralization potentials, but little is known about the scale at which these heterogeneities impact the spreading of contaminants. A modeling study aiming at quantifying how heterogeneous degradation potentials in agricultural soil will affect MCPA degradation and leaching was conducted. 2D-distributions (96-well micro plate mineralization assay) of the mineralization potentials of phenoxy acid herbicides (MCPA, 2,4-D) representing layers in the upper meter of variably-saturated clayey till were applied.

The rapid mineralization measured was represented by Monod mineralization kinetics, whereas the rest were either represented by slow 0-order mineralization kinetics or no degradation. Five 3D-modelling scenarios were set up using the COMSOL Multiphysics 4.1 toolbox (COMSOL Inc., Burlington, MA, USA): 1) simple matrix flow of water with no biodegradation of the MCPA at all nodes; 2) preferential flow (including a wormhole) of water with no biodegradation of the MCPA at all nodes; 3) simple matrix flow of water with average biodegradation of the MCPA at all nodes, which corresponds to results derived from a conventional homogenized soil sample; 4) simple matrix flow of water with the observed high variation in biodegradation of the MCPA corresponding to random variation in degradation; and 5) vertical structure in water flow combined with vertically structured degradation (defined hot spots and cold spots), which corresponds to a situation where both flow and degradation are associated with macropores/wormholes.

Results show that cm-scale heterogeneity in degradation potential with simple matrix flow has a negligible effect on MCPA leaching at one meter below soil surface. By introducing a wormhole in the low-permeable 3D-soil modeling domain, however, the risk of MCPA-leaching below one meter depth increase drastically with low degradation potential along the wall of macropores/wormholes.

Language: English
Year: 2011
Proceedings: 2011 AGU Fall Meeting
Types: Conference paper
ORCIDs: Binning, Philip John , Dechesne, Arnaud and Smets, Barth F.

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis