About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Spatial distribution of life-history traits and their response to environmental gradients across multiple marine taxa

From

National Institute of Aquatic Resources, Technical University of Denmark1

Centre for Ocean Life, National Institute of Aquatic Resources, Technical University of Denmark2

Technical University of Denmark3

University of British Columbia4

Sir Alister Hardy Foundation for Ocean Science5

Section for Oceans and Arctic, National Institute of Aquatic Resources, Technical University of Denmark6

Trait-based approaches enable comparison of community composition across multiple organism groups. Yet, little is known about the degree to which empirical trait responses found for one taxonomic group can be generalized across organisms. In this study, we investigated the spatial variability of marine community-weighted mean traits and compared their environmental responses across multiple taxa and habitats, including pelagic zooplankton (copepods), demersal fish, and benthic infaunal invertebrates.

We used extensive, spatially explicit datasets collected from scientific surveys in the North Sea and examined community composition of these groups using a trait-based approach. In order to cover the key biological characteristics of an organism, we considered three life-history traits (adult size, offspring size, and fecundity) and taxon-specific feeding traits.

While many of the traits co-varied in space and notably demonstrated a south–north gradient, none of the traits showed a consistent spatial distribution across all groups. However, traits are often correlated as a result of trade-offs. When studying spatial patterns of multiple traits variability in fish and copepods, we showed a high spatial correlation.

This also applied to a lesser extent to fish and benthic infauna, whereas no correlation was found between benthic infauna and copepods. The result suggested a decoupling in the community traits between strictly benthic and strictly pelagic species. The strongest drivers of spatial variability for many community traits are the gradients in temperature seasonality, primary productivity, fishing effort, and depth.

Spatial variability in benthic traits also co-varied with descriptors of the seabed habitat. Overall, results showed that trait responses to environmental gradients cannot be generalized across organism groups, pointing toward potential complex responses of multi-taxa communities to environmental changes and highlighting the need for cross-habitat multi-trait analyses to foresee how environmental change will affect community structure and biodiversity at large

Language: English
Year: 2018
Pages: e02460
ISSN: 21508925
Types: Journal article
DOI: 10.1002/ecs2.2460
ORCIDs: 0000-0002-8930-8786 , van Denderen, P. Daniel , Payne, Mark R. and Lindegren, Martin

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis