About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Domain-induced activation of human phospholipase A2 type IIA: Local versus global lipid composition

From

Universidad de los Andes1

University of Southern Denmark2

Department of Chemistry, Technical University of Denmark3

Secretory human phospholipase A(2) type IIA (PLA(2)-IIA) catalyzes the hydrolysis of the sn-2 ester bond in glycerolipids to produce fatty acids and lysolipids. The enzyme is coupled to the inflammatory response, and its specificity toward anionic membrane interfaces suggests a role as a bactericidal agent.

PLA(2)-IIA may also target perturbed native cell membranes that expose anionic lipids to the extracellular face. However, anionic lipid contents in native cells appear lower than the threshold levels necessary for activation. By using phosphatidylcholine/phosphatidylglycerol model systems, we show that local enrichment of anionic lipids into fluid domains triggers PLA(2)-IIA activity.

In addition, the compositional range of enzyme activity is shown to be related to the underlying lipid phase diagram. A comparison is done between PLA(2)-IIA and snake venom PLA(2), which in contrast to PLA(2)-IIA hydrolyzes both anionic and zwitterionic membranes. In general, this work shows that PLA(2)-IIA activation can be accomplished through local enrichment of anionic lipids into domains, indicating a mechanism for PLA(2)-IIA to target perturbed native membranes with low global anionic lipid contents.

The results also show that the underlying lipid phase diagram, which determines the lipid composition at a local level, can be used to predict PLA(2)-IIA activity.

Language: English
Publisher: Biophysical Society
Year: 2006
Pages: 3165-3175
ISSN: 15420086 , 00063495 and 05236800
Types: Journal article
DOI: 10.1529/biophysj.105.070987
ORCIDs: 0000-0002-4258-8960 and Peters, Günther H.j.

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis