About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Dimethyl ether oxidation at elevated temperatures (295-600 K)

From

Risø National Laboratory for Sustainable Energy, Technical University of Denmark1

Dimethyl ether (DME) has been proposed for use as an alternative fuel or additive in diesel engines and as a potential fuel in solid oxide fuel cells. The oxidation chemistry of DME is a key element in understanding its role in these applications. The reaction between methoxymethyl radicals and O(2) has been examined over the temperature range 295-600 K and at pressures of 20-200 Torr.

This reaction has two product pathways. The first produces methoxymethyl peroxy radicals, while the second produces OH radicals and formaldehyde molecules. Real-time kinetic measurements are made by transient infrared spectroscopy to monitor the yield of three main products-formaldehyde, methyl formate, and formic acid-to determine the branching ratio for the CH(3)OCH(2) + O(2) reaction pathways.

The temperature and pressure dependence of this reaction is described by a Lindemann and Arrhenius mechanism. The branching ratio is described by f = 1/(1 + A(T)[M]), where A(T) = (1.6(+2.4)(-1.0) x 10(-20)) exp((1800 +/- 400)/T) cm(3) molecule(-1). The temperature dependent rate constant of the methoxymethyl peroxy radical self-reaction is calculated from the kinetics of the formaldehyde and methyl formate product yields, k(4) = (3.0 +/- 2.1) x 10(-13) exp((700 +/- 250)/T) cm(3) molecule(-1) s(-1).

The experimental and kinetics modeling results support a strong preference for the thermal decomposition of alkoxy radicals versus their reaction with O(2) under our laboratory conditions. These characteristics of DME oxidation with respect to temperature and pressure might provide insight into optimizing solid oxide fuel cell operating conditions with DME in the presence of O(2) to maximize power outputs.

Language: English
Year: 2005
Pages: 10940-10953
ISSN: 15205215 and 10895639
Types: Journal article
DOI: 10.1021/jp054223t
Keywords

10-S miljø

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis