About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Model studies of long Josephson junction arrays coupled to a high-Q resonator

From

Technical University of Denmark1

Department of Physics, Technical University of Denmark2

Series-biased arrays of long Josephson junction fluxon oscillators can be phase locked by mutual coupling to a high-Q, linear distributed resonator. A simplified model of such a device, consisting of junctions described by the particle-map perturbation theory approach which are capacitively coupled to a lumped, linear tank circuit, reproduce the essential experimental observations at a very low computational cost.

A more sophisticated model, consisting of partial differential equation descriptions of the junctions, again mutually coupled to a linear tank, substantially confirm the predictions of the simplified model. In the particle-map model, the locking range in junction bias current increases linearly with the coupling capacitance; in the partial differential equation (p.d.e.) model, this holds up to a certain maximum value of the capacitance, after which a saturation of the locking range is observed.

In both models, for a given spread of junction lengths, the existence of a minimum value of the capacitance for locking to a tank with a given resonant frequency is evidenced. Journal of Applied Physics is copyrighted by The American Institute of Physics.

Language: English
Publisher: American Institute of Physics
Year: 1992
Pages: 3179-3185
ISSN: 10897550 and 00218979
Types: Journal article
DOI: 10.1063/1.352343

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis