About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Production, oxygen respiration rates, and sinking velocity of copepod fecal pellets: Direct measurements of ballasting by opal and calcite

From

Section for Ocean Ecology and Climate, National Institute of Aquatic Resources, Technical University of Denmark1

National Institute of Aquatic Resources, Technical University of Denmark2

Production, oxygen uptake, and sinking velocity of copepod fecal pellets egested by Temora longicornis were measured using a nanoflagellate (Rhodomonas sp.), a diatom (Thalassiosira weissflogii), or a coccolithophorid (Emiliania huxleyi) as food sources. Fecal pellet production varied between 0.8 pellets ind(-1) h(-1) and 3.8 pellets ind(-1) h(-1) and was significantly higher with T. weissflogii than with the other food sources.

Average pellet size varied between 2.2 X 10(5) mu m(3) and 10.0 X 10(5) mu m(3). Using an oxygen microsensor, small-scale oxygen fluxes and microbial respiration rates were measured directly with a spatial resolution of 2 mu m at the interface of copepod fecal pellets and the surrounding water. Averaged volume-specific respiration rates were 4.12 fmol O-2 mu m(-3) d(-1), 2.86 fmol O-2 mu m(-3) d(-1), and 0.73 fmol O-2 mu m(-3) d(-1) in pellets produced on Rhodomonas sp., T. weissflogii, and E. huxleyi, respectively.

The average carbon-specific respiration rate was 0.15 d(-1) independent on diet (range: 0.08-0.21 d(-1)). Because of ballasting of opal and calcite, sinking velocities were significantly higher for pellets produced on T. weissflogii (322 +/- 169 m d(-1)) and E. huxleyi (200 +/- 93 m d(-1)) than on Rhodomonas sp. (35 +/- 29 m d(-1)).

Preservation of carbon was estimated to be approximately 10-fold higher in fecal pellets produced when T. longicornis was fed E. huxleyi or T. weissflogii rather than Rhodomonas sp. Our study directly demonstrates that ballast increases the sinking rate of freshly-produced copepod fecal pellets but does not protect them from decomposition.

Language: English
Publisher: American Society of Limnology and Oceanography
Year: 2008
Pages: 469-476
ISSN: 00243590 and 19395590
Types: Journal article
DOI: 10.4319/lo.2008.53.2.0469
ORCIDs: Koski, Marja
Keywords

Erhvervsfiskeri

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis